AYUDANTE DE INVESTIGACIÓN
Contrato Predoctoral
PUBLICACIONES
2024
Guzmán González-Mateos; Miguel A Prada; Antonio Morán; Raúl González-Herbón; Manuel Domínguez
A PID Control Architecture Based on IEC 61499 Journal Article
En: IFAC-PapersOnLine, vol. 58, no 7, pp. 91-96, 2024, ISSN: 2405-8963, (4th IFAC Conference on Advances in Proportional-Integral-Derivate Control PID 2024).
Resumen | Enlaces | BibTeX | Etiquetas: AUTOMATIZACIÓN CONTROL Y SUPERVISIÓN INDUSTRIAL
@article{GonzalezMateos2024,
title = {A PID Control Architecture Based on IEC 61499},
author = {Guzmán González-Mateos and Miguel A Prada and Antonio Morán and Raúl González-Herbón and Manuel Domínguez},
doi = {10.1016/j.ifacol.2024.08.016},
issn = {2405-8963},
year = {2024},
date = {2024-08-28},
urldate = {2024-08-28},
journal = {IFAC-PapersOnLine},
volume = {58},
number = {7},
pages = {91-96},
abstract = {This work presents an approach for PID control and optimization in a distributed system, using the IEC 61499 control standard. This standard enables communication among different PLCs, which are used to develop a three-layered event-driven control of a SISO loop. The lowest layer is in charge of cyclical data acquisition. The second layer carries out an event-based PID control. The highest layer runs a control optimization algorithm, specifically a simple tuning approach based on Ziegler-Nichols that is used to determine the PID parameters for different operating points. The proposed approach is assessed in a tank level SISO control problem, whose behavior can be modeled as a first-order plus dead time system in each operating point. For that purpose, it has been implemented using two PLCs and a software PLC running on an industrial computer. The experimental results on the SISO level control loop show the feasibility of the proposed approach for event-driven control in a distributed system and open interesting research questions in the intersection of controller design and distributed automation.},
note = {4th IFAC Conference on Advances in Proportional-Integral-Derivate Control PID 2024},
keywords = {AUTOMATIZACIÓN CONTROL Y SUPERVISIÓN INDUSTRIAL},
pubstate = {published},
tppubtype = {article}
}
Raúl González-Herbón; Guzmán González-Mateos; José Ramón Rodríguez-Ossorio; Manuel Domínguez; Serafín Alonso; Juan J Fuertes
An Approach to Develop Digital Twins in Industry Journal Article
En: Sensors, vol. 24, no 3, 2024, ISSN: 1424-8220.
Enlaces | BibTeX | Etiquetas: AUTOMATIZACIÓN CONTROL Y SUPERVISIÓN INDUSTRIAL, INDUSTRIA 4.0
@article{GonzalezHerbon2024AnApproach,
title = {An Approach to Develop Digital Twins in Industry},
author = {Raúl González-Herbón and Guzmán González-Mateos and José Ramón Rodríguez-Ossorio and Manuel Domínguez and Serafín Alonso and Juan J Fuertes},
url = {https://www.mdpi.com/1424-8220/24/3/998},
doi = {10.3390/s24030998},
issn = {1424-8220},
year = {2024},
date = {2024-02-03},
urldate = {2024-01-01},
journal = {Sensors},
volume = {24},
number = {3},
keywords = {AUTOMATIZACIÓN CONTROL Y SUPERVISIÓN INDUSTRIAL, INDUSTRIA 4.0},
pubstate = {published},
tppubtype = {article}
}
2023
Miguel A Prada; Juan J Fuertes; José Ramón Rodríguez-Ossorio; Raúl González-Herbón; Guzmán González-Mateos; Manuel Domínguez
Hands-on training in industrial cybersecurity for a multidisciplinary Master's degree Journal Article
En: IFAC-PapersOnLine, vol. 56, no 2, pp. 11217–11222, 2023, ISSN: 2405-8963.
Enlaces | BibTeX | Etiquetas: CIBERSEGURIDAD EN INFRAESTRUCTURAS CRÍTICAS, LABORATORIOS VIRTUALES Y REMOTOS
@article{Prada2023,
title = {Hands-on training in industrial cybersecurity for a multidisciplinary Master's degree},
author = {Miguel A Prada and Juan J Fuertes and José Ramón Rodríguez-Ossorio and Raúl González-Herbón and Guzmán González-Mateos and Manuel Domínguez},
doi = {10.1016/j.ifacol.2023.10.850},
issn = {2405-8963},
year = {2023},
date = {2023-11-22},
urldate = {2023-11-22},
journal = {IFAC-PapersOnLine},
volume = {56},
number = {2},
pages = {11217--11222},
publisher = {Elsevier BV},
keywords = {CIBERSEGURIDAD EN INFRAESTRUCTURAS CRÍTICAS, LABORATORIOS VIRTUALES Y REMOTOS},
pubstate = {published},
tppubtype = {article}
}
Raúl González-Herbón; Guzmán González-Mateos; José Ramón Rodríguez-Ossorio; Serafín Alonso; Juan J Fuertes; Manuel Domínguez
Gemelo digital de una célula electro-neumática robotizada Proceedings Article
En: XLIV Jornadas de Automática, pp. 225-230, Universidade da Coruña. Servizo de Publicacións, 2023.
Enlaces | BibTeX | Etiquetas: AUTOMATIZACIÓN CONTROL Y SUPERVISIÓN INDUSTRIAL, INDUSTRIA 4.0, LABORATORIOS VIRTUALES Y REMOTOS
@inproceedings{GonzalezHerbon2023Digital,
title = {Gemelo digital de una célula electro-neumática robotizada},
author = {Raúl González-Herbón and Guzmán González-Mateos and José Ramón Rodríguez-Ossorio and Serafín Alonso and Juan J Fuertes and Manuel Domínguez},
url = {https://doi.org/10.17979/spudc.9788497498609.225},
year = {2023},
date = {2023-09-06},
urldate = {2023-09-06},
booktitle = {XLIV Jornadas de Automática},
pages = {225-230},
publisher = {Universidade da Coruña. Servizo de Publicacións},
keywords = {AUTOMATIZACIÓN CONTROL Y SUPERVISIÓN INDUSTRIAL, INDUSTRIA 4.0, LABORATORIOS VIRTUALES Y REMOTOS},
pubstate = {published},
tppubtype = {inproceedings}
}
Raúl González-Herbón; Guzmán González-Mateos; Serafín Alonso; Miguel A Prada; Juan J Fuertes; Antonio Morán; Manuel Domínguez
Virtual Flow Meter for an Industrial Process Proceedings Article
En: Engineering Applications of Neural Networks, pp. 433–444, Springer Nature Switzerland, Cham, 2023, ISBN: 978-3-031-34203-5.
Resumen | Enlaces | BibTeX | Etiquetas: AUTOMATIZACIÓN CONTROL Y SUPERVISIÓN INDUSTRIAL, MACHINE LEARNING
@inproceedings{GonzalezHerbon2023Virtual,
title = {Virtual Flow Meter for an Industrial Process},
author = {Raúl González-Herbón and Guzmán González-Mateos and Serafín Alonso and Miguel A Prada and Juan J Fuertes and Antonio Morán and Manuel Domínguez},
doi = {10.1007/978-3-031-34204-2_36},
isbn = {978-3-031-34203-5},
year = {2023},
date = {2023-06-07},
urldate = {2023-06-07},
booktitle = {Engineering Applications of Neural Networks},
pages = {433--444},
publisher = {Springer Nature Switzerland},
address = {Cham},
abstract = {The digitalization process has emerged strongly in the industry, causing an increase of connected sensors and IIoT devices, which produce a great amount of varied data. However, some industrial variables are hard to measure because of its high cost, complex installation mechanisms or non-stop production requirements. These variables could be indirectly estimated based on other related variables available in the process. Data-driven methods would be appropriate for this purpose, modelling real and potentially complex industrial processes. In this paper, a methodology to develop a virtual flow meter for industrial processes is presented. It assumes the impossibility of installing a flow meter in the process, so a non-invasive flow meter is used punctually to measure and capture data for training data-driven methods. Three different methods have been trained to obtain the model function: multiple linear regression (MLR), multilayer perceptron (MLP) and long-short term memory (LSTM). The developed virtual flow meter has been tested on a pilot plant built with real industrial equipment. LSTM method yields the best performance in the flow estimation, providing the lowest MAE and RMSE errors. It is able to consider temporal dependencies, besides modelling the nonlinear nature of industrial processes.},
keywords = {AUTOMATIZACIÓN CONTROL Y SUPERVISIÓN INDUSTRIAL, MACHINE LEARNING},
pubstate = {published},
tppubtype = {inproceedings}
}
Juan J Fuertes; Raúl González-Herbón; José Ramón Rodríguez-Ossorio; Guzmán González-Mateos; Serafín Alonso; Antonio Morán
Guidelines to develop demonstration models on industry 4.0 for engineering training Journal Article
En: International Journal of Computer Integrated Manufacturing, vol. 36, no 10, pp. 1465-1481, 2023.
Enlaces | BibTeX | Etiquetas: AUTOMATIZACIÓN CONTROL Y SUPERVISIÓN INDUSTRIAL, INDUSTRIA 4.0, LABORATORIOS VIRTUALES Y REMOTOS
@article{Fuertes2023Guidelines,
title = {Guidelines to develop demonstration models on industry 4.0 for engineering training},
author = {Juan J Fuertes and Raúl González-Herbón and José Ramón Rodríguez-Ossorio and Guzmán González-Mateos and Serafín Alonso and Antonio Morán},
doi = {10.1080/0951192X.2023.2189308},
year = {2023},
date = {2023-03-17},
urldate = {2023-03-17},
journal = {International Journal of Computer Integrated Manufacturing},
volume = {36},
number = {10},
pages = {1465-1481},
publisher = {Taylor & Francis},
keywords = {AUTOMATIZACIÓN CONTROL Y SUPERVISIÓN INDUSTRIAL, INDUSTRIA 4.0, LABORATORIOS VIRTUALES Y REMOTOS},
pubstate = {published},
tppubtype = {article}
}
2022
Raúl González-Herbón; José Ramón Rodríguez-Ossorio; Guzmán González-Mateos; Antonio Morán; Serafín Alonso; Juan J Fuertes
Control de caudal con un sensor virtual basado en técnicas de deep learning Proceedings Article
En: XLIII Jornadas de Automática, pp. 368–375, Universidade da Coruña. Servizo de Publicacións 2022.
Enlaces | BibTeX | Etiquetas: AUTOMATIZACIÓN CONTROL Y SUPERVISIÓN INDUSTRIAL, INDUSTRIA 4.0, MACHINE LEARNING
@inproceedings{gonzalez2022control,
title = {Control de caudal con un sensor virtual basado en técnicas de deep learning},
author = { Raúl González-Herbón and José Ramón Rodríguez-Ossorio and Guzmán González-Mateos and Antonio Morán and Serafín Alonso and Juan J Fuertes},
doi = {10.17979/spudc.9788497498418.0368},
year = {2022},
date = {2022-09-01},
urldate = {2022-01-01},
booktitle = {XLIII Jornadas de Automática},
pages = {368--375},
organization = {Universidade da Coruña. Servizo de Publicacións},
keywords = {AUTOMATIZACIÓN CONTROL Y SUPERVISIÓN INDUSTRIAL, INDUSTRIA 4.0, MACHINE LEARNING},
pubstate = {published},
tppubtype = {inproceedings}
}
José Ramón Rodríguez-Ossorio; Raúl González-Herbón; Guzmán González-Mateos; Antonio Morán; Miguel A Prada; Ignacio Díaz; Manuel Domínguez
Sensor virtual de caudal basado en técnicas de deep learning Proceedings Article
En: XVII Simposio CEA de Control Inteligente, pp. 81-86, 2022.
Enlaces | BibTeX | Etiquetas: INDUSTRIA 4.0, MACHINE LEARNING
@inproceedings{nokey,
title = {Sensor virtual de caudal basado en técnicas de deep learning},
author = { José Ramón Rodríguez-Ossorio and Raúl González-Herbón and Guzmán González-Mateos and Antonio Morán and Miguel A Prada and Ignacio Díaz and Manuel Domínguez},
doi = {10.18002/simceaci},
year = {2022},
date = {2022-06-29},
urldate = {2022-07-01},
booktitle = {XVII Simposio CEA de Control Inteligente},
journal = {XVII Simposio CEA de Control Inteligente},
pages = {81-86},
keywords = {INDUSTRIA 4.0, MACHINE LEARNING},
pubstate = {published},
tppubtype = {inproceedings}
}
Manuel Domínguez; Juan J Fuertes; Miguel A Prada; Serafín Alonso; Antonio Morán; Daniel Pérez; José Ramón Rodríguez-Ossorio; Raúl González-Herbón; Guzmán González-Mateos
Demostradores para la formación en digitalización de la industria Book Chapter
En: vol. 21, pp. 65-116, Universidad de León, 2022.
Enlaces | BibTeX | Etiquetas: AUTOMATIZACIÓN CONTROL Y SUPERVISIÓN INDUSTRIAL, INDUSTRIA 4.0, LABORATORIOS VIRTUALES Y REMOTOS
@inbook{Fuertes2022Demostradores,
title = {Demostradores para la formación en digitalización de la industria},
author = {Manuel Domínguez and Juan J Fuertes and Miguel A Prada and Serafín Alonso and Antonio Morán and Daniel Pérez and José Ramón Rodríguez-Ossorio and Raúl González-Herbón and Guzmán González-Mateos},
url = {https://dialnet.unirioja.es/servlet/articulo?codigo=8688670},
year = {2022},
date = {2022-03-01},
urldate = {2022-03-01},
journal = {Premios a la innovación en la enseñanza},
volume = {21},
pages = {65-116},
publisher = {Universidad de León},
keywords = {AUTOMATIZACIÓN CONTROL Y SUPERVISIÓN INDUSTRIAL, INDUSTRIA 4.0, LABORATORIOS VIRTUALES Y REMOTOS},
pubstate = {published},
tppubtype = {inbook}
}